Predicting Visual Features from Text for Image and Video Caption Retrieval
نویسندگان
چکیده
This paper strives to find amidst a set of sentences the one best describing the content of a given image or video. Different from existing works, which rely on a joint subspace for their image and video caption retrieval, we propose to do so in a visual space exclusively. Apart from this conceptual novelty, we contribute Word2VisualVec, a deep neural network architecture that learns to predict a visual feature representation from textual input. Example captions are encoded into a textual embedding based on multi-scale sentence vectorization and further transferred into a deep visual feature of choice via a simple multi-layer perceptron. We further generalize Word2VisualVec for video caption retrieval, by predicting from text both 3-D convolutional neural network features as well as a visual-audio representation. Experiments on Flickr8k, Flickr30k, the Microsoft Video Description dataset and the very recent NIST TrecVid challenge for video caption retrieval detail Word2VisualVec’s properties, its benefit over textual embeddings, the potential for multimodal query composition and its state-of-the-art results.
منابع مشابه
Using Text Surrounding Method to Enhance Retrieval of Online Images by Google Search Engine
Purpose: the current research aimed to compare the effectiveness of various tags and codes for retrieving images from the Google. Design/methodology: selected images with different characteristics in a registered domain were carefully studied. The exception was that special conceptual features have been apportioned for each group of images separately. In this regard, each group image surr...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملبررسی تأثیر نمایهسازی مفهوم-محور تصاویر بر بازیابی آنها با استفاده از موتور جستجوی گوگل
Purpose: The purpose of the present study is to investigate the Impact of Concept-based Image Indexing on Image Retrieval via Google. Due to the importance of images, this article focuses on the features taken into account by Google in retrieving the images. Methodology: The present study is a type of applied research, and the research method used in it comes from quasi-experimental and techno...
متن کاملآشکارسازی و تعیین مکان متون فارسی - عربی در تصاویر ویدیویی
Video text detection plays an important role in applications such as semantic-based video analysis, text information retrieval, archiving and so on. In this paper, we propose a Farsi/Arabic text detection approach. First, with an appropriate edge detector, edges are extracted and then by using edges cross ponts, artificial corners are extracted. Artificial corner histogram analysis is done for ...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.01362 شماره
صفحات -
تاریخ انتشار 2017